A fully coupled atmosphere–ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

نویسندگان

  • P. Katsafados
  • A. Papadopoulos
  • G. Korres
چکیده

It is commonly accepted that there is a need for a better understanding of the factors that contribute to air–sea interactions and their feedbacks. In this context it is important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface requires knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously crosstalking dynamic system. Following and adapting concepts already developed and implemented in large-scale numerical weather models and in hurricane simulations, this study aims to present the effort towards developing a new, highresolution, two-way fully coupled atmosphere–ocean wave model in order to support both operational and research activities. A specific issue that is emphasized is the determination and parameterization of the air–sea momentum fluxes in conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, the so-called WEW (worketa-wam), are also discussed. In a case study of a high-impact weather and sea-state event, the wind–wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind–wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Next-Generation Air–Ocean–Wave Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

Introduction: A team of NRL scientists from the Marine Meteorology and Oceanography Divisions has successfully transformed the one-way air–ocean Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®*) into a six-way fully coupled air–ocean– wave weather and marine forecasting system. This was accomplished using the state-of-the-art Earth System Modeling Framework (ESMF), making COAMPS t...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Interactive comment on “Ocean–atmosphere–wave characterization of a wind jet (Ebro shelf, NW Mediterranean Sea)” by M. Grifoll et al

The authors use a coupled atmosphere-ocean-wave model (SWAN) to simulate winds in a particular region on the continental shelf in the Mediterranean Sea. After showing that the model does a good job in reproducing the observed wind and wave patters, the authors use different parameterizations for the atmospheric bottom roughness length: in one case it depends on wind intensity ("uncoupled" simul...

متن کامل

Development of a mathematical model to design an offshore wind and wave hybrid energy system

Fossil Fuels are always considered as environmental pollutants. On the other hand, the political and economic situations highly affect the price of these fuels. Offshore wind and wave, as renewable energy sources, represent the better alternatives for electricity generation. Therefore, it is necessary that wind speeds effectively be estimated due to the absence of field measurements of the wind...

متن کامل

Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere–Wave–Ocean Models and Observations

It is widely accepted that air–sea interaction is one of the key factors in controlling tropical cyclone (TC) intensity. However, the physical mechanisms for connecting the upper ocean and air–sea interface with storm structure through the atmospheric boundary layer in TCs are not well understood. This study investigates the air–sea coupling processes using a fully coupled atmosphere–wave–ocean...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016